
Interfaces



• Advantages of abstract classes:

1. They provide a common parent class for 
similar but distinct classes.

2. They force the subclasses to implement 
essential methods.



Interfaces

• Here is another use for abstract methods.  I have 
a bunch of classes with different properties.  A 
superclass of them does not make sense.  But I 
still want to be able to make a list of objects of 
these classes and do a common operation, such 
as Print, to each of these objects.

• A bad solution is to make the list be a list of 
Objects. To run the operation on an object from 
the list, cast the object into its native type, and 
run the operation on it.



• A better solution is to make an interface that 
contains an abstract declaration for the 
common method, and to force each class to 
implement the interface.



• Here is a simple interface declaration:

public interface Printable {

void Print();

}



We change our class declarations to say that 
they implement the interface:

public class Person implements Printable {
.....

The compiler will make sure that the class  
implements each method listed in the interface 
declaration.



Interfaces can serve as the base type for arrays 
and lists:

Printable L = new Printable[ ]



Question: What is the difference between an 
Abstract class and an Interface?

A. You can't make an object of an Abstract class 
but you can of an Interface.

B. You can't make an object of an Interface but 
you can of an Abstract class.

C. Abstract classes  are complete classes with 
some methods not filled in. Interfaces 
describe one  or more properties of the class.



Answer C:  You can’t construct an object of an 
abstract class because you don’t have  code for all 
of its methods. An interface doesn’t even describe a 
whole class; you can’t construct an object of an 
interface, so answers  (A) and (B) are wrong. 

Answer (C) correctly describes the difference 
between abstract classes and interfaces.



Question: I have a class Person and want to make 
subclasses for CollegeStudent and ConStudent.  
How would you do that?

A. Make an abstract subclass of Person called 
Student and have CollegeStudent and 
ConStudent both extend that.

B. Make an interface called Student and have  
both College Student and ConStudent(which 
are subclasses of Person) implement that.


